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This article generalizes the vibration theory of quasilinear systems
whose motion is described by ordinary differential equations to systems
with a time lag. The case of resonance in quasilinear non-autonomous
systems with a lag is considered.

1. Formulation of the prohlem. We shall consider a system whose
motion is described by differential-difference equations of the form

T =Nast—w)+/O+uX( st—), . 2=, p) (L)

g=1

Yhere
z(t) = (2 (t)v cea Zn (1)), g = “aasj“ (s, i=1,..., n)

a, are constant matrices, f(t) = f,(t), ..., f,(¢t)) are periodic and con-
tinuous functions of time t, of period 27, and the functions X = (Xl,

e, X;) are periodic and continuous with respect to t, of period 2n7.
These functions have continuous partial derivatives with respect to
x,(t-7,), ..., x,(t =7 ) in some region GG, defined by the inequalities
|x(t = r )| <R, |p| < p* where R and p* are positive constants. The
functions X_ have, in the same region, continuous partial derivatives with
respect to the parameter u. The positive constantsr,, ..., 7 are such
that

n=0<n << << 2r

The problem is to determine the periodic solutions (of period 27 ) of
the system (1.1) which Lecome, when g = 0, the periodic solution x 0) of
the generating system

EO o)+ 1) (12)
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We will consider the characteristic equation

,
Z age” "o r— EN

a==1

AN = =0 (1.3)

of the homogeneous system (1.2).

The roots of this equation which are either equal to zero or to
s N v = 1 will be called critical. (Nj are integers).

We will distinguish two cases: the non resonance case, when equation
(1.3) has no critical roots or roots near (to a magnitude of order of
smallness p) to numbers of the form+ N. /- 1, and the resonance case,
when among the roots of equation (1.3) some of the roots are critical.
In both cases the problem will be the determination of the periodic
solutions of the system (1.1).

This is the way in which the prollem was stated in articles [ 1-3]
when quasi-linear systems whose motion is described by ordinary diffe-
rential equations were considered. The results of these articles can,

however, le carriel over with great generality to systems with lag.

2. Periodic solutions of the system (1.2). 1. The non-resonance
case. (a) Let us assume that all roots of the equation (1.3) have real
parts which are different from zero.

We will introduce into the discussion the functions

A (i
Iy (iN) = Z_(%l (2.1)
where A(iA ) is defined by formula (1.3), and A, (iA) is the algebraic
cofactor of the element of the matrix || A (iA)7]| in the jth column and
sth row. It is clear that under the assumption made about the roots of
equation (1.3) the functions I'; (i A ) will be continuous in the interval
- <A<, and as |[A| > 0, wvill have order O(JA| ~1). Moreover, the

functiorlls I, . (ix) will also be continuous and satisfy the condition
O(x | -1),

We will define the functions

1 T o 1
K () =57 | e Tu(@d,  Kiu(t) =5 | enlf)d  (2.2)

In accordance with the remarks made about the properties of the func-
tions I’js(i)\ ), it can be shown that the integrals
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oo
V| Kjs (1) de (2.3)
have finite values.

The periodic solution of the system (1.2) is defined by the following
functions:

n -+ n oo
zF () =2 | Ji(2) Ko (@ —t)dz== 3 | 0+ 0 Ky@de 29
e (s:i,...,:I:nl)noo

This periodic solution will be wnique. Tt can, of course, always be
found in the form of a Fourier series, if we assume that the functions
f(t) have Fourier expansion. The estimate

|z (1) | < AM, A = max {i +Sm | Ksj (a:)]dx} (2.5)

holds, where M is subject to the condition lfj(tH < M,

(b) We will assume now that we are dealing with the non-resonance case,
but that among the roots of equation (1.3) there is a finite number of
simple pure imaginary noncritical roots of the fom o ., where w; # ’\’

(NJ are integers). In this case the system (1.1) will also have a umqne
periodic solution, conforming to an estimate of type (2.5),

To construct the solution, we will define the functions r's"f(i?\) as
follows: we will surround the numbers . by the intervals 2¢ " which are
so small that the intervals [w. — ¢, @, + €] will not contain any inte-
ger. This can always be accomplishel, since w;y/~ 1 are noncritical roots.
Let outside these intervals and on their boundaries I'_*(i) = I"_.(i\). Tn-
side the indicated intervals we define the functions TJ such tflat the
functions, together with their first derivatives with respect to A, will
be continuous in the interval —~ o < A < o, This can always Le done. Then
the periodic solution x:(t) of the system (1.1), will also, as before, in
this case determine the relations (2.2) and (2.4), 1in which the o Gia)

are replaced by the I'| *(z,)\) For this solution the estimates (2.5) are
valid.

2. The resonance case. We will assume now that among the roots of
equation (1.3) there is a finite number of simple critical roots of the
form N-\/ -1( = «vv, k) and that the remaining roots are noncritical
and satlsfy either cOnrhtlon "a" or condition "b"., In this case the
periodic solution of the system (1.2) can be hroken up into two parts;
one part will have no critical harmonics N.y/- 1, and the other solution
will consist of critical harmonics only. Speaking generally, it is natural



Quasilinear systems with lag 1201

that in this case a periodic solution may not exist. In order that the
system (1.2) have periodic solutions, the functions f.(r) must satisfy
conditions which are similar to the case of ordinary differential equa-
tions.

Let
k
i) =i () + N cirexp (Mt V' —1) (f=1,.., n) (2.6)
l

=1

Here the functions ¢y(t) have no resonance harmonics
1 _ ,
Cjt = 5~ S fiexp(— NtV —N)ydt  G=1,...,n1=1,., k) 2.7
We will seek the periodic solution xs*(t) of the system (1.2) in the
form of the sum

*
z* = xsl*+ Lsg

where the x " are determined from the system (1.1), in which the fs(t)
are replacei by the ¢s(t), and where the s __* are determined from the
system (1.1) in which the functions f,(t) are replaced by the second term
of (2.6).

We will construct the functions I'_*(t) as in "b", supplementing the
intervals (a% — €, @; + €) by the additional intervals (AG -, AG +€).
Outside these intervals r;;(ik) =T :(ix). The r;f(tx) are constructed in
the interior of the indicated intervals so that tﬂe functions and their
derivatives with respect to A are continuous in the interval — o0 < A < + oo,
Then the periodic functions x_,* will be determined using formulas (2.2)
and (2.4), in which ["_ must be replaced by I'.j, and the functions f ()
must be replaced by the periodic functions«ﬁsit).

The functions ¢ _(t) have the estimates
I[P )| <M (1 + k) = M* (M >/ () (2.8)

where M are positive constants. The estimates (2.5) will hold for the
periodic functions S¢q"» in which M and I, ; must be replaced by M* and
r;; respectively. We will note that the estimate (2.%) can be substantially
improved if we assume differentiability with respect to t of the functions

f(t).

The periodic functions x.,* will be sought in the form of a trigono-
metric series

k
Ze* (1) = 2 Csjexp (N; V —11) (s=1,..., n) (2.9)
=1

The constants Csj satisfy a system of linear homogeneous algebraic
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equations of the form

" (2.10)
T — =1,...,
3 (D awnrexp(—wl; V=) — by Ny =1 )i =cu; (S- - n)
I=1 o=1 F=1...,k

The system (2.10) has a solution, and the system (1.2) admits a
periodic solution, provided the conditions

2r n

\ D bsexp(— N; VD) fi()de =0 G=t... k)  (2.41)

¢ =}

are satisfied.

Here b, exp (- N. v~ 1) (j = 1, ..., k) are period solutions of the
. J % P
"conjugate® system oI the homogeneous system (1.2}, of the form

L S ezt + ) (2.12)

o==1

where a,” is the transposition of the matrix a,. It is clear that bl].
satisfies the following system of linear homogeneous equations

n r

D (B — s xp (waV; V") By N ¥ =)y =0 s=1,...,m)  (2.13)
=] o=]

We will assume that the conditions (2,11) are satisfied., Then the

system (2.10) is compatible. The solution can be found as follows.

Since N. y/ - 1 is a simple root of the equation (1.3), we can find
among the first minors at least one minor which is different from zero.
We will assume that this minor corresponds to the element in the inter-
section of the first row with the first column A, # 0. Tgnoring the
first equation and setting C, . = 0, we shall find the remaining C, ., ...,
C,; by Cramer’s rule from the last n — 1 of equation (2.10). It is easily
seen that all Csj will have the estimate

G| <B:M (M >7f01])

where B depends on the form of the matrix a, and the root Nj vV~-1of
the equation (1.3},

Therefore the solution x.," will be completely determined by the de-
termined operator L_*, which depends on f:

Zee®* = L* (8, ) (2.14)
This operator has the properties

Lg* (¢, fO A f@) = L* (¢, f0) + L* (¢, @) (2.15)
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Lg* (t,cf) = eLs* (8, f) (¢ = const) (2.16)

k
IL*(t, 1) |< D BiM (2.17)

Finally, the linear homogeneous system (1.2), in the resonance case,
has a periodic solution of period 27 of the form

k
e = D) Midy;exp (N; ¥V =1t) (s=1,...,n) (2.18)
j=1
where M,, ..., M, are arbitrary constants d_; - k of particular solutions
of the k linear homogeneous system (2,10) (in which csj = 0},

The particular solution x_, *(t), which has been found earlier, can also
be represented by means of a completely determined operator L **, satisfy-
ing the conditions (2.15), (2.1A) and the estimate

Lo (t,9)| < AM (2.19)
where the constants are determined in the formulas (2.5), (2.8).

Introducing the determined operator L = L * + L_**, we come to the
following conclusion.

In the resonance case, when the equation (1.3) has & simple critical
roots, a periodic solution of the system (1.2) exists, provided the con-
ditions (2.11) are satisfied.

This periodic solution will have k arbitrary constants Mi' ey My,
and can be written in the form

K
T (8)= ) Mipe; (8) 4+ Lo (2, fryees )y 5=10ee0m) (2.20)
j==1
where ¢) . are periodic solutions of the homogeneous system (1.2), and L
is a completely determined operator satisfying the conditions (2.15),
(2.16) and the estimate

k
Lot Froen F) | < (3 By +400+ B)) M = 4, 2.21)
j=1
Note. In the case when the critical roots N. V’— 1 are multiple, the
number of periodic solutions of the homogeneous systems (1.2) and (2.12)
will be m < k. The conditions (2.11) will, as before, be existence con-
ditions for a solution of the system (1,2) but there will be m» of them.
As these conditions are satisfied, the periodic solution can, as before,
be written in the form (2,20), Here, however, the number of arbitrary
constants Mi will be =, and the operators Ls will have another form, but
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they will still have the same properties of linearity and homogeneity and
an estimate of type (2.21).

3. The periodic solution of the system (1.1) in the nen-
resonance case. Theorem 1. If among the roots of the characteristic
equation there are no critical roots, and if the number of pure imagin-
ary non-critical roots is finite, then the system (1.1) has a unique
periodic solution of period 27, defined in the region || <9 (7 is a
sufficiently small positive number) and becomes, when y = 0, the generat-
ing periodic solution of the system (1.2).

The proof of Theorem 1 is easily ohtained by the usual methol of
successive approximations.

We will note that the theorem is also valid for an infinite number of
imaginary non-critical roots, provided we can find an ¢ > 0, such that
in the intervals (o, - ¢, o; + ¢) there will be no imaginary non-critical
roots on the imaginary axis.

4. The periodic solution of the system (1.1) in the reso-
nance case. We will assume that the system (1.2) admits a generating
periodic solution of the form

Zy0 = ‘Mlo(Psi )+ ...+ fWkO(Psk (t) + s (1) (s=1,....,n) (4.1)

where Mle, eeey M;O are constants, ¢ . are particular periodic solutions
of the homogeneous system (1.2), and ¢ _(t) is the periodic solution of
the system (1.2). The latter holds if the conditions (2,11) are satisfied.
We will assume that the constants M '/ are such that { x (0)3 lies in the
region (7. Then the following theorem, which generalizes the propositions

of Malkin [2] to systems with lag, is valid.

Theorem 2. A necessary condition that the system (1.1) have a periodic
solution x (¢, p) which Lecomes, when p = 0, the ﬁeneratin solution of
(4.1), is the requirement that the constants Ml(0 , eeey MO satisfy the
system of erquations

v n
Py(Mp,..., M) = — —;;S S X, (t, 2Ot — 1,),..., 200 (£ —1,), 0) §o; dit

5 =1

(=1, k) (4.2)

where the t¥ . are periodic solutions of the "conjugate” of the system

(2.13).

sj

If under these conditions the Jacobian

8(P1.....Py)

bk =M® 4
ot i,y 70 T (4.)
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is different from zero, then the system (1,1) has a unique periodic solu-
tion x (¢, #), which becomes, when p = 0, the generating periodic solu-
tion of (4.1).

The solution is ‘efinel in the region !u| < n vhere n > 0 is suffi-
ciently small. This proposition is a sirple consequence of the more
general condition for the existence of a periodic solution for the system
(1.1), and it generalizes the conditions which we obtainel in article
[3]. We will derive these conditions.

5. The anxiliary system and its periodic solutions. 1. Ve
will consider the following system of equations:

r k
d
Z=D ast—m)+/(0)+ D e W; (5.1)
o=1 j=1
where ¢5. = ¢, -, ....«ﬁnj} are periodic solutions of the homogeneous

system and the W} are constants.

We will show that the constants ¥. can always lie chosen so that the
conditions for the existence of a periodic solution of the differential
system (5,1) will always be satisfied,

In fact, for the system (5.1), these conditions have the form
an n

S D baifs(dt +dy Wyt 4+ dgWe=0  G=L..k)  (5.2)
o =1
where ¢/ . are periolic solutions of the "conjugate’ of the system (2,12),
and d, . 1s defined by the equations
J
2T n
dij = S 2 @iyt (5.3)
0 &=1
It is sufficient to show that the determinant }diji (i, j=1, ..., n)
is different from zero.

If di, = «o. =d;, =0, then this would mean that to the critical root
N, v - 1 there correspond not one, but two particular solutions, There-
fore, not all the dij are equal to zero.

We will assume now that {d .| = 0. We will show that this leals to a
contradiction. In fact we can %ind numbers,-’\.l y +++y A, such that
Adyj + . Axdy; =0 (7 =1..00k) (5.4)
But then the system of equations
r
d -~
o= e (t—) -+ Ay + . + Ay (5.5)
o=1

will have a periodic solution ¢(t), and the homogeneous system (1.2) will
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have, in addition to the k periodic solutions corresponding to the k
critical roots, a solution with secular terms which also corresponds to
the critical roots:

z(t) = ¢ () + (Aypy (2) + ..+ Axpre (1))

The latter is impossible by virtue of the assumptions that we have
made, since x(¢t) is independent of $1s +ee, ¢, and is the k + 1 solution
corresponding to k critical roots. Therefore the determinant |dij| 1s
different from zero.

2. We will consider the auxiliary system of integro-differential equa-
tions with lag having the form

dx(n

k
= S w10+ pX O 2 (=)t (=)0 2o
- (5.6)

Here the constants W are uniquely determined from the linear non-
homogeneous system

2n

k
" S X (8, x(t—1)r 2 (t—1), Wit 4 M Widij =0 (=1 k) (5.7)

0 i=1
We assume that the conditions (2.11) are satisfied for fe

Lemma. The system of integro-differential equations with lag deter-
mines a family of periodic solutions depending on k arbitrary constant
parameters Ml’ ++ey M, and a parameter p of the form

Zs* (t, M, E") = Ml‘Psl + ...+ Mk?’sk ~+ @5 1+ l-"xs* (t, Ml,-‘-yMk:l*)

(s=1,.... k) (5.8)
where x *(t M, p) are continuous functions of the parameters M6 A
defined in some neighborhood of the fixed point M, (0 ) Mk( ), and
the parameter p, for |p|< p* (p* is some posu:lve number) These func-
tions have continuous partial rerivatives with respect to M1’ cee, Mk'

They are periodic and continuous functions of time t and period 2.

When X_ are analytic relative to x and p in G, the functions x* will
also be analytic relative to M,, ..., M_ in some neighborhood of the
point Ml(o), . MM(O) for lu]1\< p*.

The proof of this proposition is obtained by the method of successive
approximations.

We will take for the first approximation the generating periodic
solution z_(9) and the constants W.(®) determined from the system (5.6)
and (5.7) when g = 0. We find that the xs(o) are determined using formulas
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(4.1) and ¥.(0) = 0. Then the Ith approximation is determined from the
system of linear equations

dzh

= Dz (t— <o) + £ (1) + wX (£ 20D (t— 1), 20D (£ — ), ) +

o=1

k
+ X W0

j=1

21 k
w{ X (a0 =) 20— ), Wa+ J W08 =0
0

i=]

In proving that all approximations lie in the region G, as well as in
the construction of majoring series, we will use the estimates obtained
in Section 2 of this article.

The proof of the convergence of the sequences 2(1) and Wi(l) yields
an estimate for the number p*.

6. Necessary and snfficient conditions for the existence of
periodic solutions of the system (1.1). We will assume that the
periodic solution x_* of the auxiliary system (5.6), (5.7) has been found.
The corresponding constants will be found from the equations (5.7).

Let us introduce the notation

M n

Wit =uP} (My,.... My, p) ~—H D Xt 2* (¢ ) (), b e
)5
=1,..., k) (6.1)

The functions P * as well as X * and W}* will be defined in some
region

nl<<p*, |Mi—MO|<H (i=1,..k

where H is some positive number -leterminel in the course of the proof of
the convergence of the successive approximations x l), W) so that the
x{1) lie in the region G.

Theorem 3. In orler that the system (1.1) have a periodic solution of
period 27 which becomes the generating solution, it is necessary and
sufficient that the equations

P* (Moo, Miyp) =0 (=10, k) (6.2)

have a solution M, (u) in some neighborhood p < 7, < p* satisfying the
condition M (0) = M, (o),
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Proof. let the system (6.2) have a solution M}(ﬂ) (M}(O) = M}(G). Then
the system of functions

5 () = & (& My (W), My (), @) (=11 m)

will be the periodic solution of the system (1,1), This proves the
sufficiency.

We will assume that the system (1.1) has a periodic solution of the
form indicated. Then the solution must belong to the family (5.8). Sub-
stituting in (5.6) and (5.7), we will find that the P.* must be equal to
zero, This proves the necessity of the condition (6.25.

In particular, to insure that the system (1,1) have a periodic solution,
it is necessary that the constants satisfy the equations (4,2)., The
necessity of the condition (4.3) follows from an application of implicit
function theory to the equations (6.2).
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